Abstract

Here we implemented a 3D comprehensive Eulerian-Lagrangian model in order to investigate the electrostatic spray transfer processes in the high-speed rotary bell sprayer. This efficient algorithm contains spray dynamics, airflow, paint droplets tracking and an electrostatic effect to simulate atomization. The algorithm is implemented using the OpenFOAM package. A solver for the particle trajectory was used to illustrate the process of spray transport and also the interaction of the airflow and the particle that is solved by momentum coupling. Creating an initial condition of the particle approach has been proposed that is matched with practical applications. The fluid-dynamics is simulated by solving the unsteady 3D compressible Navier-Stokes equations. Unsteady flow is computed by using a Large eddy simulation (LES) turbulence approach, while the motion of the particles is simulated by tracking the droplet size distribution approach. The model correctly predicts that the bell cup spin forces the paint particles to fall off from the bell surface towards the high-velocity airflow. The present work illustrates a tentative benchmark and contains a systematic analysis of the recirculation zone length, the toroidal vortex, the overspray phenomena and the flowfield characteristics like mean velocity, pressure, turbulent kinetic energy and velocity fluctuation. The results indicate as dominant operating parameter the air-paint flow rate with voltage level deeply affecting the spray shape. A more uniform distribution of the coating is obtained by growing this high-velocity shaping airflow, although the values of the transfer efficiency (TE) are reduced. The distribution of the particle size is very sensitive to changes in the rotational speed. Experimental results obtained in this study put forward a clear link between the shaping air flow rate and the rotation frequency on the aerodynamics and also provide valuable insights to design modern ERBS. The paint spray distribution obtained in the present work is validated against coating experimental results with suitable accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call