Abstract

A lattice Boltzmann-phase field coupled model is developed and utilized to investigate dendrite growth with melt convection in magnetic field. In this model, the two-relaxation-time scheme with D2Q9 vectors is extended to simulate the magnetofluid flow, the anisotropic scheme is developed to model dendrite growth of binary alloys, and the finite volume method is utilized to simulate the solute transport with anti-trapping current. After model validation, the growth of single dendrite and multi-dendrites of a binary alloy with magnetic field and melt flow are numerically investigated. The results show that the magnetic flow on dendrite growth cannot be ignored, the magnetic field can greatly change dendrite growth by affecting the flow field and then affecting solute transport. This work provides a numerical solution to reveal the internal mechanism of dendritic growth under external magnetic fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.