Abstract

The Fire Dynamics Simulator (FDS) model was utilized in this study to replicate a full-scale aircraft postcrash experiment conducted within the C-133 test facility by the Federal Aviation Administration. FDS is a computational fire field model that incorporates submodels for soot formation, pyrolysis, and thermal radiation transport. It solves three-dimensional time-dependent Navier–Stokes equations and is grounded in the large-eddy simulation approach and the eddy dissipation concept, serving as turbulence and combustion models. The obtained results, including the heat release rate and temperature, were validated against experimental data and compared with earlier prediction studies employing different turbulence and combustion models. The results from this simulation closely align with the experiment’s findings. The impact of fire-blocking layers and carry-on baggage on interior material was examined. Moreover, two boundary conditions were imposed on the fuselage structure: 1) the adiabatic wall, and 2) heat loss within the wall. Both the fire-blocking layers and the adiabatic boundary condition played a significant role in the flashover occurrence. The large-eddy simulation and eddy dissipation concept approaches have demonstrated a reliable ability to predict flashover and general fire properties to a considerable extent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call