Abstract

The world maritime transportation is suffering a large increase in recent years and as a result of this increased on global trade, there is a consequent increase in waterway transportation and demand for fossil fuels, resulting in emissions of air pollutants. Consequently, the impact of transport emissions on climate change was put on the list of priorities. It has a high fuel demand as a result of continuous use of main engines for propulsion, electricity and heat production. The highest exposure levels of air pollution are found in ports and near them because most of the world fleet is positioned in these areas. The port of Rio de Janeiro city, in the Southeast Brazilian coastal, is inserted in the Guanabara Bay (GB), where the breezes recirculate pollutants in Metropolitan Region of Rio de Janeiro (MRRJ). Therefore, the aim of this research was to use the Brazilian Regional Atmospheric Modeling System (BRAMS) to generate the wind fields in the MRRJ and to calculate the trajectories of pollutants emitted on GB related to the waterway transportation, using a 3D kinematic trajectories model. Results demonstrated that for the periods analysed, the Central and west areas in the coastal region of the Rio de Janeiro city were the local most affected in the summer. In winter the trajectories reached the cities of the Rio de Janeiro and Duque de Caxias. Both in summer and winter, the trajectories followed towards the South Atlantic Ocean in the morning. Conclusions about this study show the need of decision-making process for better management of waterway transportation sector, improving the harmful effects on air quality in cities located in coastal regions.

Highlights

  • Emissions from the transport sector play a key role, since transport is growing fast at global scale

  • The world maritime trade is suffering a large increase in recent years and as a result, there is a consequent increase in waterway transportation and demand for fossil fuels, resulting in emissions of air pollutants

  • The trajectories followed by pollutants emitted by these sources show the sector contribution to air quality in the Metropolitan Region of Rio de Janeiro (MRRJ)

Read more

Summary

Introduction

Emissions from the transport sector play a key role, since transport is growing fast at global scale. The maritime transport sector contributes significantly to air pollution, in coastal areas; in terms of emission reduction this transport sector received less attention in the past [5]-[7]. The world maritime trade is suffering a large increase in recent years and as a result, there is a consequent increase in waterway transportation and demand for fossil fuels, resulting in emissions of air pollutants. Shipping emissions are currently increasing and will likely continue in the future due to the increase of global-scale trade. This modal has a potential to contribute to air quality degradation mainly in coastal areas and to global air pollution [9]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call