Abstract
The present research explores linear as well as nonlinear radiation patterns based on the MHD non-Newtonian (Maxwell) nanofluid flow having Arrhenius activation energy. This study's core focus is MHD properties in non-Newtonian fluid dynamics and boundary layer phenomena analysis. It initiates with time-dependent equations, employing boundary layer approximations. Extensive numerical computations, executed with custom Compact Visual Fortran code and the EFD method, provide profound insights into non-Newtonian fluid behavior, revealing intricate force interactions and fluid patterns. To check the stability of the solution, a convergence and stability analysis is performed. With the values of ΔY = 0.25, Δτ = 0.0005, and ΔX = 0.20; it is found that the model convergence occurs to the Lewis number, Le > 0.016 as well as the Prandtl number, Pr > 0.08. In this context, investigating non-dimensional results that depend on multiple physical factors. Explanation and visual representations of the effects of different physical characteristics and their resultant temperatures, concentrations, and velocity profiles are provided. As a result of the illustrations, the skin friction coefficient and Sherwood number, which are calculated, as well as Nusselt values, have all come up in discussion. Additionally, detailed representations of isothermal lines and streamlines are implemented, and it is pointed out that the development of these features occurs at the same time as Brownian motion. Furthermore, the temperature field for Maxwell fluid is modified due to the impression of chemical reaction as well as the Dufour number (Kr and Du). Our research demonstrates the superior performance of non-Newtonian solutions, notably in cases involving activation energy and nonlinear radiation. This paradigm shift carries significant implications. In another context, the interplay between Maxwell fluid and nonlinear radiation is notably affected by activation energy, offering promising applications in fields like medicine and industry, particularly in groundbreaking cancer treatment approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.