Abstract

Predicting the cleaning time required to remove a thin layer of soil is a challenging task and subject of current research. One approach to tackle this problem is the decomposition into physical sub-problems which are modelled separately and the subsequent synthesis of these models. In this paper, an existing model for adhesive detachment is extended for the prediction of the cleaning time of cohesively separating soil layers. The extension is based on measurements of the pull-off forces and their correlation to the local water mass fraction. The resulting new model is validated using cleaning experiments with starch in a fully developed channel flow. Furthermore, an inhomogeneous soil distribution and its effect on cleaning results like cleaning time and removal rate is investigated. It is shown that accounting for the local soil distribution in the model leads to a significant improvement of the prediction of the cleaning behaviour.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.