Abstract

An evaluation of the wave-induced pore pressures and effective stresses has been recognized by marine geotechnical engineers as an important factor in the design of marine pipelines. Most previous investigations for such a problem have considered the pipeline as a rigid material. Thus, the internal stresses within the pipeline have not been examined in the wave–seabed–pipe interaction problem. In this paper, we consider the pipeline itself to be an elastic material, and link the analysis of the pipeline with the wave–seabed interaction problem. Based on the numerical model presented, the effects of pipe geometry and variable soil characteristics on the wave-induced pore pressure and internal stresses will be discussed in detail. It is found that the internal normal stresses in the angular direction ( σ p θ ) and shear stress ( τ p) within the pipe are much larger than the amplitude of wave pressure at the surface of the seabed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.