Abstract
A fully implicit two-dimensional moving-mesh finite element simulation model was developed to study the influence of grain boundaries in polycrystalline solids on diffusion-controlled liquid–solid transition during transient liquid phase (TLP) bonding. The new model, which was developed without the non-trivial symmetry assumption in existing numerical models for the process, was found to conserve solute and its calculated solutions were unconditionally stable and in good agreement with experimental results. Contrary to the assumption that increased grain boundary diffusion coefficient would significantly accelerate the rate of liquid–solid interface migration, numerical calculations and experimental verification showed that enhanced intergranular diffusivity had a minimal effect on the time required to achieve complete diffusion-induced solidification in cast superalloys. The results indicate that reducing the number of grain boundaries in structural alloys through directional solidification casting techniques did not constitute a disincentive to efficient application of TLP bonding to this class of materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.