Abstract

The uniformity of the exit jet pattern in high pressure gas-assisted laser cutting represents the main feature in order to achieve high cutting quality and capability. Therefore, the effect of both inlet stagnation pressure and nozzle geometry on the behavior of the exit jet has been investigated in this research. Quasi 1-D gas dynamics theory has been used to calculate the exact-design operating conditions for three different supersonic nozzles that were fabricated by means of Wire Electrical Discharge Machining. The jet flow through these nozzles has been numerically modeled and experimentally checked, using Schlieren visualization, under exact-design, over-expansion and under-expansion operating conditions coming to a good numerical-experimental agreement in terms of flow structure. As main result, the exit jet was found to preserve its uniform distribution with parallel boundaries and low divergence under the exact-design operating condition, differently to what observed for the others two conditions, especially for nozzle with small divergence angle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call