Abstract
In electronics cooling, water is increasingly replacing air for applications requiring high heat flux. Water is the ideal substitute due to its high specific heat capacity and density. Indeed, high values of heat capacity (high density and specific heat capacity) enable water to receive, store and carry higher amounts of energy compared to air. Water's incompressibility and very low specific volume also requires smaller amounts of mechanical work for fluid circulation. Using warm water instead of chilled water makes the cooling process more economical, but requires more efficiently designed cold-plates. Our current work focuses on modeling and optimization of a V-groove mini-channel cold-plate using warm water as the coolant. Our results show that the performance of an impinging channel heat sink is significantly different compared to parallel channel designs. Dividing the flow into two branches cuts the fluid velocity and flow path in half for the impinging design. This reduction in the fluid velocity and flow length affects the developing thermal boundary layer and is an important consideration for a shorter length heat exchanger (where the channel length is comparable to the thermal entrance length). Distributing the coolant uniformly to every channel is a challenge for impinging cold-plates where there are strict limitations on size.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.