Abstract

A numerical model coupling electromagnetic field and plasma arc impact with multiphase transport phenomena such as flow, heat transfer and solidification for the vacuum arc remelting (VAR) process is proposed. 3D simulations of the VAR process for refining a Titanium-based (Ti–6Al–4V) alloy are made. Different arc distributions (diffusive, constricted centric, constricted eccentric, and rotating arcs) under an axial magnetic field (AMF) are studied, focusing on their impact on the flow patterns and the resulting melt pool of the as-solidifying ingot. Simulation results show that diffusive arc leads to a shallow symmetrical melt pool; constricted centric and rotating arcs lead to electro-vortex flow and the symmetrical melt pool; constricted eccentric leads to electro-vortex flow as well, but the deepest non-symmetrical melt pool.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.