Abstract

Laser bending is an innovative technique to obtain the required bend-angle and sheet metal curvature by means of laser beam irradiation with controlled laser parameters. In this work, a numerical investigation on curvilinear laser bending of magnesium M1A aoy sheets has been carried out. Three-dimensional sequential transient thermomechanical numerical model is developed by using finite element method. The model has been validated by comparing the predicted results with those obtained in the experiments. The curvilinear laser bending process is studied in terms of temperature distribution, stress–strain distribution, bend angle and displacement at the edges. The results showed that the bend angle increases with increase in scanning path curvature. It is observed that the displacement at various edges and final shape of the worksheet are affected by the scanning path curvature. The results will be useful in adjustment and alignment processes and the generation of complex shapes using lasers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.