Abstract
Electromagnetic forming(EMF) is a high-velocity manufacturing technique which uses electromagnetic (Lorentz) body forces to shape sheet metal parts. One of the several advantages of EMF is the considerable ductility increase observed in several metals, with aluminum featuring prominently among them. Electromagnetically assisted sheet metal stamping(EMAS) is an innovative hybrid sheet metal processing technique that combines EMF into traditional stamping. To evaluate the efficiency of this technique, an experimental scheme of EMAS was established according to the conventional stamping of cylindrical parts from aluminum and the formability encountered was discussed. Furthermore, a “multi-step, loose coupling” numerical scheme was proposed to investigate the deformation behaviors based on the ANSYS Multiphysics/LS-DYNA platform through establishing user-defined subroutines. The results show that electromagnetically assisted deep drawing can remarkably improve the formability of aluminum cylindrical parts. The proposed numerical scheme can successfully simulate the related Stamping-EMF process, and the deformation characteristics of sheet metal reflect experimental results. The predicted results are also validated with the profiles of the deformed sheets in experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transactions of Nonferrous Metals Society of China
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.