Abstract

To develop a new method for the prediction of interface pressure applied by medical compression bandages. A finite element simulation of bandage application was designed, based on patient-specific leg geometries. For personalized interface pressure prediction, a model reduction approach was proposed, which included the parametrization of the leg geometry. Pressure values computed with this reduced model were then confronted to experimental pressure values. The most influencing parameters were found to be the bandage tension, the skin-to-bandage friction coefficient and the leg morphology. Thanks to the model reduction approach, it was possible to compute interface pressure as a linear combination of these parameters. The pressures computed with this reduced model were in agreement with experimental pressure values measured on 66 patients' legs. This methodology helps to predict patient-specific interface pressure applied by compression bandages within a few minutes whereas it would take a few days for the numerical simulation. The results of this method show less bias than Laplace's Law, which is for now the only other method for interface pressure computation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.