Abstract

Purpose By modeling and analyzing the two-phase mechanical seal of the fan-shaped groove end face, which is prone to phase change, an effective method to study the flow field of the mechanical seal when both cavitation and boiling exist simultaneously is found. Design/methodology/approach Based on the finite volume method, a fluid model was developed to investigate a two-phase mechanical seal. The validity of the proposed model was verified by comparing with some classical models. Findings By modeling and analyzing the two-phase mechanical seal of the fan-shaped groove end face, which is prone to phase change, the analysis of the gap flow field of the mechanical seal was realized when cavitation and boiling existed simultaneously. Originality/value Based on the model proposed for different conditions, the pressure and phase states in the shallow groove sealing gap were compared. The phase change rate between the mechanical seal faces was also investigated. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2019-0537/

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call