Abstract

A numerical model of turbidity currents with a deforming bottom boundary has been developed. The model predicts the vertical structure of the flow velocity and concentration as well as change in the bed level due to erosion and deposition of suspended sediment. The Reynolds-averaged Navier-Stokes equations for dilute suspension have been solved using a finite volume method. The bottom boundary and the grid system are allowed to adjust in response to sediment deposition and entrainment during the computation. The model has been applied to simulate the evolution of a conservative saline density current and turbidity currents along an 11.6 m long flume that includes a slope followed by a horizontal bed. The model successfully simulates the evolution of the currents. Model results have been compared with the experimental data. Good similarity profiles of velocity and excess density or suspended sediment concen- tration are obtained at both the upstream supercritical and the downstream subcritical flow regions. A turbulent Schmidt number larger than one has been found to be appropriate for providing a good match with the experimental data. Changes in bed level predicted by the model have also been found to be in agreement with the experiment data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.