Abstract

A mathematical model of the electro-gas-dynamics of a gas–particle system is described. A numerical method for solving the system of equations is proposed, and an analysis is made of the motion of charged solid aerosol particles in gas–particle flow in the electric field produced by the corona electrode of the atomizer, the grounded surface on which deposition is performed, and the charge of the aerosol particles in the interelectrode space. The solution is based on the two-velocity two-temperature model of a monodisperse medium without phase transitions and coagulation assuming that only the carrier medium, described by the Navier–Stokes equations for a compressible gas, has viscosity. The dispersed phase is defined by the equation of conservation of mass, the equations of conservation of momentum components taking into account the Coulomb force and aerodynamic friction, and the equation of conservation of internal energy. The system is written in generalized coordinates in dimensionless form and solved using the explicit McCormack method with splitting over the spatial coordinates and a conservative correction scheme. The velocity and density fields of the gas–particle mixture were investigated in the interelectrode space and near the surface on which solid aerosol particles in the gas–particle flow are deposited.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.