Abstract

Abstract Direct current (DC) electric arcs are of particular interest because they can produce large volumes of thermal plasmas with controlled energy deposition. When such discharges are applied in a gas flow, convection displaces the top of the arc downstream while the arc roots remain attached to the electrodes, thus increasing the length of the arc over time. However, this growth is limited by a restrike phenomenon, which starts from streamers appearing in high electric field regions and shortcutting the long, stretched electric arc. From a numerical point of view, DC arcs can be efficiently simulated with a resistive magneto-hydrodynamics (MHD) model, with numerical requirements in terms of spatial and temporal discretization that are compatible with classic fluid dynamics and combustion simulations. However, arc restrikes rely on the propagation of streamer discharges that are highly non-neutral phenomena, whereas classical MHD assumes neutrality. To tackle this problem, we propose in this paper a model of restrike that can be used in an MHD approach. After describing the ideas of the model, we perform a parametric study of the input parameters to examine its influence on the discharge dynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call