Abstract

Salt diapirs are commonly seen in the North Sea. Below the Zechstein Group exist possibly overpressured salt-anhydrite formations. One explanation as to the salt precipitation in areas with salt diapirs is that salt cementation is thermally driven and occurs strongly in places adjacent to salt diapirs. This paper assumes that the sealing effect of the cap rock above the salt formations is compromised and overpressured fluids, carrying dissolved minerals such as anhydrite (CaSO4) and salt mineral components (NaCl of halite), flow into the porous sedimentary layers above the salt formations. Additionally, a salt-diapir-like structure is assumed to be at one side of the model. The numerical flow and heat transport simulator SHEMAT-Suite was developed and applied to calculating the concentrations of species, and dissolution and precipitation amounts. Results show that the overpressured salt-anhydrite formations have higher pressure heads and the species elements sodium and chlorite are transported into porous sediment rocks through water influx (saturated brine). Halite can precipitate as brine with sodium and chlorite ions flows to the cooler environment. Salt cementation of reservoir rocks leads to decreasing porosity and permeability near salt domes, and cementation of reservoir formations decreases with growing distance to the salt diapir. The proposed approach in this paper can also be used to evaluate precipitation relevant to scaling problems in geothermal engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.