Abstract

AbstractA realistic subject‐specific human head model was constructed based on structural magnetic resonance imaging (sMRI) data. Electrical conductivities were assigned inhomogeneously according to tissue type and variability within each head segment. A three‐dimensional (3D) finite‐difference method (FDM) was used to compute the evolution of the electrical potential from a single electrical dipole within the brain. The Douglas–Rachford FDM and three versions of iterative FDM were tested on a three‐layer concentric sphere model. The successive over‐relaxation (SOR) iterative method showed the best convergence properties and hence was used to compute the electrical potential within a realistic head model. The effect of using inhomogeneous rather than homogeneous conductivities within head segments of this model was shown to be important. Copyright © 2003 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.