Abstract
Introduction. One of the greatest accents in the steel structures researches is the optimization of the design model. It is possible to reduce the cost of steel structures, optimize moment distribution and dynamic characteristics of the frame using the finite secant stiffness, which can be obtained by the described in the paper numerical modeling method. There are a lot of perspectives for the engineer in the field of numerical modeling. Most of them are possible to implement in the design procedure nowadays, but it is important to develop methods and standards for numerical modeling, in order to obtain convenient tools and reliable results. In order to study this issue in more depth, the “moment - turn” curve was studied, maximum stress values were determined, and rigidity and strength characteristics were prepared for each type of joint for structural analysis. Materials and methods. In the program Ansys was modelling three types of steel joints: end-plate connections, double web-angle connections and top and seat angle connections. Results. For three types of joints was obtained ultimate moment, location of destruction and moment-rotation curve. For extended end-plate connections was comparison of the obtained curve with experimental data. Conclusions. Three types of steel joints were modeled in the paper. The numerical modeling results show good correlation with the experimental ones. The data about the behavior of the joints were extracted and analyzed. As result, “moment-angle of rotation” curves were obtained. Finite secant stiffness of the joints for considering steel structures was obtained in the analysis. The resulting finite secant stiffness can be used in the steel frames design procedure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.