Abstract
Ethanol-blended fuel releases usually stimulate methanogenesis in the subsurface, which could pose an explosion risk if methane accumulates in a confined space above the ground where ignitable conditions exist. Ethanol-derived methane may also increase the vapor intrusion potential of toxic fuel hydrocarbons by stimulating the depletion of oxygen by methanotrophs, and thus inhibiting aerobic biodegradation of hydrocarbon vapors. To assess these processes, a three-dimensional numerical vapor intrusion model was used to simulate the degradation, migration, and intrusion pathway of methane and benzene under different site conditions. Simulations show that methane is unlikely to build up to pose an explosion hazard (5% v/v) if diffusion is the only mass transport mechanism through the deeper vadose zone. However, if methanogenic activity near the source zone is sufficiently high to cause advective gas transport, then the methane indoor concentration may exceed the flammable threshold under simulated conditions. During subsurface migration, methane biodegradation could consume soil oxygen that would otherwise be available to support hydrocarbon degradation, and increase the vapor intrusion potential for benzene. Vapor intrusion would also be exacerbated if methanogenic activity results in sufficiently high pressure to cause advective gas transport in the unsaturated zone. Overall, our simulations show that current approaches to manage the vapor intrusion risk for conventional fuel released might need to be modified when dealing with some high ethanol blend fuel (i.e., E20 up to E95) releases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.