Abstract

We present a numerical image-formation model for investigating the influence of partial coherence, sample thickness and depth-of-focus on the accuracy of tomographic reconstructions in transmission x-ray microscopes. The model combines wave propagation through the object by finite difference techniques with Fourier methods. We include a ray-tracing model to analyse the origin of detrimental stray light in zone plate-based x-ray microscopes. These models allow optimization of x-ray microscopy systems for quantitative tomographic imaging of thick objects. Results show that both the depth-of-focus and the reconstructed local absorption coefficient are highly dependent on the degree of coherence of the optical system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.