Abstract

In the kinematic theory of lithospheric plate tectonics, the position and parameters of the plates are predetermined in the initial and boundary conditions. However, in the self-consistent dynamical theory, the properties of the oceanic plates (just as the structure of the mantle convection) should automatically result from the solution of differential equations for energy, mass, and momentum transfer in viscous fluid. Here, the viscosity of the mantle material as a function of temperature, pressure, shear stress, and chemical composition should be taken from the data of laboratory experiments. The aim of this study is to reproduce the generation of the ensemble of the lithospheric plates and to trace their behavior inside the mantle by numerically solving the convection equations with minimum a priori data. The models demonstrate how the rigid lithosphere can break up into the separate plates that dive into the mantle, how the sizes and the number of the plates change during the evolution of the convection, and how the ridges and subduction zones may migrate in this case. The models also demonstrate how the plates may bend and break up when passing the depth boundary of 660 km and how the plates and plumes may affect the structure of the convection. In contrast to the models of convection without lithospheric plates or regional models, the structure of the mantle flows is for the first time calculated in the entire mantle with quite a few plates. This model shows that the mantle material is transported to the mid-oceanic ridges by asthenospheric flows induced by the subducting plates rather than by the main vertical ascending flows rising from the lower mantle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call