Abstract

We present a 3D model designed to compute permeability in a cemented polydisperse granular material composed of spherical grains. A non-cohesive granular deposit is constructed by means of the Discrete Element Method (DEM) then cement is deposited on grains using three simple models. Finally the solid sample is subjected to an upward hydraulic gradient in order to measure permeability. The fluid flow through the connected sample pores is modeled using the Lattice Boltzmann Method (LBM). The computed permeability coefficients are in good agreement with the existing classical values. The evolution of permeability with the cement deposit growth is studied for the three proposed cementation models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.