Abstract

A numerical model for prediction of cutting force components in peripheral milling process, including the cutting process damping, is proposed. The cutting process damping creates two components (thrust and tangential) of a dynamic cutting force. The total force model is obtained through numerical integration of the local forces. The effects of tool parameters (diameter, helix angle, number of teeth) on process damping and cutting force distributions are discussed. It is shown that the average value of the process damping and the amplitude of the cutting force increase with increasing the tool diameter. On the other hand, when the tool helix angle increases the process damping increases and the cutting force decreases. The number of tool teeth’s has not an influence on the variation of the damping process and cutting force but an influence on the number of cycles of the periodic cutting process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.