Abstract

In this paper, a meticulous numerical model is developed and simulated using computational fluid dynamics technique so as to analyse the heat transfer and temperature distribution on each layer of the air cooled solar photovoltaic panel. The proposed numerical model comprises of bottom air cooling layer and diverse layers of solar panel such as glass, ethyl vinyl acetate, photovoltaic cell, and tedlar. The discrete ordinates model is employed to apply the solar load in the numerical computation. The computational fluid dynamics simulated average temperatures are compared with the experimental measured values and found to be in commendable agreement. The RMSE1, RMSE2, and R-squared values were obtained for top glass, tedlar and outlet air temperature is 1.112949, 0.022619, 0.998175, 0.993115, 0.019556, 0.998451, and 0.077683, 0.022618, 0.988113, respectively. The top glass and photovoltaic cell contour clearly visuvalizes the temperature distribution through out the layer. It is also found that the maximum top glass, photovoltaic cell, tedlar and outlet air temperature of photovoltaic-thermal system are about 58.06°C, 58.39°C, 59.44°C, and 45.48°C, respectively. This article has been corrected. Link to the correction 10.2298/TSCI170702161E

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.