Abstract
We propose, analyze and compare the efficiency and accuracy of different numerical schemes for the solution of the nonlinear Schrödinger equation with a trapping potential. In particular we study schemes of finite difference, pseudospectral and spectral types for the space discretization together with explicit symplectic, multistep, split-step and standard variable-step integrators to solve the time evolution. All of these schemes are evaluated comparatively and some recommendations based on their accuracy and computational efficiency are made.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.