Abstract

The mean exit time and escape probability are deterministic quantities that can quantify dynamical behaviors of stochastic differential equations with non-Gaussian α-stable type Lévy motions. Both deterministic quantities are characterized by differential–integral equations (i.e., differential equations with nonlocal terms) but with different exterior conditions. A convergent numerical scheme is developed and validated for computing the mean exit time and escape probability for two-dimensional stochastic systems with rotationally symmetric α-stable type Lévy motions. The effects of drift, Gaussian noises, intensity of jump measure and domain sizes on the mean exit time are discussed. The difference between the one-dimensional and two-dimensional cases is also presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.