Abstract

We present three alternative derivations of the method of characteristics (MOC) for a second order nonlinear hyperbolic partial differential equation (PDE) in two independent variables. The MOC gives rise to two mutually coupled systems of ordinary differential equations (ODEs). As a special case we consider the Monge–Ampère (MA) equation, for which we present a general method of determining the location and number of required boundary conditions. We solve the systems of ODEs using explicit one-step methods (Euler, Runge-Kutta) and spline interpolation. Reformulation of the Monge–Ampère equation as an integral equation yields via its residual a proxy for the error of the numerical solution. Numerical examples demonstrate the performance and convergence of the methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call