Abstract

Abstract In this work, a second-order accuracy in both space and time Crank–Nicolson (C-N)-type scheme, a fourth-order accuracy in space and second-order accuracy in time compact scheme and a sixth-order accuracy in space and second-order accuracy in time compact scheme are proposed for the derivative nonlinear Schrödinger equation. The C-N-type scheme is tested to satisfy the conservation of discrete mass. For the two compact schemes, the iterative algorithm and the Thomas algorithm in block matrix form are adopted to enhance the computational efficiency. Numerical experiment is given to test the mass conservation for the C-N-type scheme as well as the accuracy order of the three schemes. In addition, the numerical simulation of binary collision and the influence on the solitary solution by adding a small random perturbation to the initial condition are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.