Abstract

Subject of this paper is the design of optimal experiments for chemical processes described by nonlinear DAE models. The optimization aims at maximizing the statistical quality of a parameter estimate from experimental data. This leads to optimal control problems with an unusual and intricate objective function which depends implicitly on first derivatives of the solution of the underlying DAE. We treat these problems by the direct approach and solve them using a structured SQP method. The required first and second derivatives of the solution of the DAE are computed very efficiently by a special coupling of the techniques of internal numerical differentiation and automatic differentiation. The performance of our approach is demonstrated for an application to chemical reaction kinetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.