Abstract

This work focuses on numerical methods for finding optimal investment, dividend payment, and capital injection policies to maximize the present value of the difference between the cumulative dividend payment and the possible capital injections. The surplus is modeled by a regime-switching jump diffusion process subject to both regular and singular controls. Using the dynamic programming principle, the value function is a solution of the coupled system of nonlinear integro-differential quasi-variational inequalities. In this paper, the state constraint of the impulsive control gives rise to a capital injection region with free boundary, which makes the problem even more difficult to analyze. Together with the regular control and regime-switching, the closed-form solutions are virtually impossible to obtain. We use Markov chain approximation techniques to construct a discrete-time controlled Markov chain to approximate the value function and optimal controls. Convergence of the approximation algorithms is proved. Examples are presented to illustrate the applicability of the numerical methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.