Abstract
In this survey we consider the development and mathematical analysis of numerical methods for kinetic partial differential equations. Kinetic equations represent a way of describing the time evolution of a system consisting of a large number of particles. Due to the high number of dimensions and their intrinsic physical properties, the construction of numerical methods represents a challenge and requires a careful balance between accuracy and computational complexity. Here we review the basic numerical techniques for dealing with such equations, including the case of semi-Lagrangian methods, discrete-velocity models and spectral methods. In addition we give an overview of the current state of the art of numerical methods for kinetic equations. This covers the derivation of fast algorithms, the notion of asymptotic-preserving methods and the construction of hybrid schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.