Abstract

This thesis is divided into two parts. Part I is devoted to the development of numerical techniques for simulating fluid-structure interaction (FSI) systems and for educing important physical mechanisms that drive these systems’ behavior; part II discusses the application of many of these techniques to investigate a specific FSI system. Within part I, we first describe a procedure for accurately computing the stresses on an immersed surface using the immersed-boundary method. This is a key step to simulating FSI problems, as the surface stresses simultaneously dictate the motion of the structure and enforce the no-slip boundary condition on the fluid. At the same time, accurate stress computations are also important for applications involving rigid bodies that are either stationary or moving with prescribed kinematics (e.g., characterizing the performance of wings and aerodynamic bodies in unsteady flows or understanding and controlling flow separation around bluff bodies). Thus, the method is first formulated for the rigid-body prescribed-kinematics case. The procedure described therein is subsequently incorporated into an immersed boundary method for efficiently simulating FSI problems involving arbitrarily large structural motions and rotations. While these techniques can be used to perform high-fidelity simulations of FSI systems, the resulting data often involves a range of spatial and temporal scales in both the structure and the fluid and are thus typically difficult to interpret directly. The remainder of part I is therefore devoted to extending tools regularly used for understanding complex flows to FSI systems. We focus in particular on the application of global linear stability analysis and snapshot-based data analysis (such as dynamic mode decomposition and proper orthogonal decomposition) to FSI problems. To our knowledge, these techniques had not been applied to deforming-body problems in a manner that that accounts for both the fluid and structure leading up to this work. Throughout part I, our methods are derived in the context of fairly general FSI systems and are validated using results from the literature for flapping flags in both the conventional configuration (in which the flag is pinned or clamped at its leading edge with respect to the oncoming flow) and the inverted configuration (in which the flag is clamped at its trailing edge). In part II, we apply many of the techniques developed in part I to uncover new physical mechanisms about inverted-flag flapping. We identify the instability-driving mechanism responsible for the initiation of flapping and further characterize the large-amplitude and chaotic flapping regimes that the system undergoes for a range of physical parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call