Abstract

In this paper we develop new methods for computing k-dimensional invariant manifolds of delayed systems for $k\geq2$. Our current implementation is built for $k=2$ only, but the numerical and algorithmic challenges encountered in this case will be also present for any $k>1$. For small delays, we consider methods for approximating delay differential equations (DDEs) with ordinary differential equations (ODEs). Once these approximations are made, any existing method for computing invariant manifolds of ODEs can then be used directly. We derive bounds on errors incurred by the most natural of these approximations. For large delays, we extend to DDEs the method originally introduced by Krauskopf and Osinga [Chaos, 9 (1999), pp. 768–774] for invariant manifolds of ODEs. We test the convergence of the resulting algorithms numerically and further illustrate our approach by computing two-dimensional unstable manifolds of equilibria in the context of phase-conjugate feedback lasers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.