Abstract

In this paper, we propose and study several accurate numerical methods for solving the one-dimensional Zakharov–Rubenchik equations (ZRE). We begin with a review on the important properties of the ZRE, including the solitary wave solutions and the various conservation laws. Then we propose a very efficient and accurate numerical method based on the time-splitting technique and the Fourier pseudo-spectral (TSFP) method. Next, we propose some conservative and non-conservative types of finite difference time domain methods, including a Crank–Nicolson finite difference method that conserves the mass and the energy of the system in the discrete level. Discrete conservation laws and numerical stability of all the proposed methods are analyzed. Comparisons between different methods in the efficiency, stability and accuracy are carried out, which identifies that the TSFP method is the most efficient and accurate numerical method among all the methods. Lastly, we apply the TSFP method to simulate and study the dynamics of the solitons in the ZRE numerically.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call