Abstract

Under the background of the mechanical mechanism research of microfluidic technology for separating and screening pipeline particulate matter, this paper proposes an improved relative motion model by combining the multiple reference frame method and the relative motion model. Worked with a quasi-fixed constant method, this model can numerically calculate the aggregation features of non-spherical particles in the low Reynolds number channels. The results demonstrate that when Re = 40~80, ellipsoids exhibit an aggregation trend similar to circular particles with the same diameter as its largest circumscribed sphere. The aggregation position is affected by the ratio of long and short axes of particles, and the distribution trend is determined by the relative size of these particles. When the channel's Reynolds number is less than the critical Reynolds number, the aggregation position of elliptical particles will be closer to the pipe center with the increase in the Reynolds number, which is contrary to the aggregation tendency of circular particles more proximate to the pipe wall with the increase in the Reynolds number. This finding provides a novel idea and method for further exploring the aggregation rules of non-spherical particles and offers substantial guidance for separating and monitoring pipeline particulate matter via microfluidic technology and other related industrial applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call