Abstract

In this paper, we present a numerical method to approximate the solution of linear stochastic Ito-Volterra integral equations driven by fractional Brownian motion with Hurst parameter $ H \in (0,1)$ based on a stochastic operational matrix of integration for generalized hat basis functions. We obtain a linear system of algebraic equations with a lower triangular coefficients matrix from the linear stochastic integral equation, and by solving it we get an approximation solution with accuracy of order $ \emph{O}(h^2)$. This numerical method shows that results are more accurate than the block pulse functions method where the rate of convergence is $ \emph{O}(h)$. Finally, we investigate error analysis and with some examples indicate the efficiency of the method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.