Abstract

AbstractAn initial-boundary value problem is considered in an unbounded do- main on the x-axis for a singularly perturbed parabolic reaction-diffusion equation. For small values of the parameter ε, a parabolic boundary layer arises in a neighbourhood of the lateral part of the boundary. In this problem, the error of a discrete solution in the maximum norm grows without bound even for fixed values of the parameter ε. In the present paper, the proximity of solutions of the initial-boundary value problem and of its numerical approximations is considered. Using the method of special grids condensing in a neighbourhood of the boundary layer, a special finite difference scheme converging ε-uniformly in the weight maximum norm has been constructed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.