Abstract

We develop a numerical method for the solution to linear adjoint equations arising, for example, in optimization problems governed by hyperbolic systems of nonlinear conservation and balance laws in one space dimension. Formally, the solution requires one to numerically solve the hyperbolic system forward in time and a corresponding linear adjoint system backward in time. Numerical results for the control problem constrained by either the Euler equations of gas dynamics or isothermal gas dynamics equations are presented. Both smooth and discontinuous prescribed terminal states are considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.