Abstract
The decrease of the bearing length in the aluminum extrusion processes results in an increase of the material flow and offers, through this, the possibility for correction and optimization. This study presents a simulation-based optimization technique which uses this effect for optimizing the material flow in a direct multi-hole extrusion process. First the extrusion process was numerically calculated to simulate the production of three rectangular profiles with equal cross sections. Here, the die orifices were arranged at various distances to the die centre, which lead to different profile exit speeds. Based on the initial numerical calculation, an automated optimization of the bearing length with the adaptive-response-surface-method was set up to achieve uniform exit speeds for all profiles. Finally, an experimental verification carried out to show the influence of the optimized die design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.