Abstract

The present work is devoted to the simulation of stress wave propagation through fractured elastic media, such as rock mass, by using the numerical manifold method (NMM). A single fracture is used to verify the capability and accuracy of the NMM in modeling fractured rock mass. The frequency-dependence on stress wave transmission across a fracture is analyzed. The influence of the fracture specific stiffness on the wave attenuation and effective wave velocity is discussed. The results from the NMM have a good agreement with those obtained from a theoretical displacement discontinuity method (DDM). Taking the advantage that the NMM is able to simulate highly fractured elastic media with a consistent mathematical cover system, a numerical example of stress wave propagation through a fractured rock mass with numerous inherent fractures is presented. It is showed that the results are reasonable and the NMM has a high efficiency in simulating stress wave propagation through highly fractured rock mass. A safety assessment of a tunnel under blast is conducted by using the NMM subsequently. The potential application of the NMM to a more complex fractured rock mass is demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.