Abstract
Globally, the solution set of a system of polynomial equations with complex coefficients can be decomposed into irreducible components. Using numerical algebraic geometry, each irreducible component is represented using a witness set thereby yielding a numerical irreducible decomposition of the solution set. Locally, the irreducible decomposition can be refined to produce a local irreducible decomposition. We define local witness sets and describe a numerical algebraic geometric approach for computing a numerical local irreducible decomposition for polynomial systems. Several examples are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.