Abstract

In this paper, we present a numerical linear algebra analytical study of some schemes for the Bertozzi–Esedoglu–Gillette–Cahn–Hilliard equation. Both 1D and 2D finite difference discretizations in space are proposed with semi-implicit and implicit discretizations on time. We prove that our proposed numerical solutions converge to continuous solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.