Abstract
A numerical iterative solution to the classical Prandtl lifting-line theory, suitably modified for poststall behavior, is used to study the aerodynamic characteristics of straight rectangular finite wings with and without leading-edge droop. This study is prompted by the use of such leading-edge modifications to inhibit stall/spins in light general aviation aircraft. The results indicate that lifting-line solutions at high angle of attack can be obtained that agree with experimental data to within 20%, and much closer for many cases. Therefore, such solutions give reasonable preliminary engineering results for both drooped and undrooped wings in the poststall region. However, as predicted by von Karman, the lifting-line solutions are not unique when sectional negative lift slopes are encountered. In addition, the present numerical results always yield symmetrical lift distributions along the span, in contrast to the asymmetrical solutions observed by Schairer in the late 1930's. Finally, a series of parametric tests at low angle of attack indicate that the effect of drooped leading edges on aircraft cruise performance is minimal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.