Abstract

The junction temperature of power semiconductors is a critical parameter during reliability evaluation. The incorporation of long-term mission profiles, such as power loadings and ambient temperature, into lifetime and reliability evaluations of power semiconductors increases the computational burden. Thus, there is an urgent need for a more accurate method for junction temperature acquisition. Current methods for junction temperature calculation are computationally inefficient and do not comprehensively incorporate long-term factors into junction temperature calculation and power semiconductor reliability evaluation. Here, a junction temperature calculation method is proposed that enables reliability evaluation for insulated gate bipolar transistor (IGBT) power semiconductors. This approach calculates the IGBT module junction temperature on the basis of an electro-thermal analogy using Gauss–Seidel iteration. When compared with electrical–thermal simulation and other numerical calculation methods, the proposed method guarantees accuracy, while greatly reducing the computational time and load. A performance comparison between the proposed method, electro-thermal simulation based on a Fuji IGBT simulator, and experimental results was carried out using a three-phase DC/AC inverter as a case study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call