Abstract

The compressibility of a dissipative particle dynamics (DPD) fluid is studied numerically through several newly developed test models, where both the density and the divergence of the velocity field are considered. In the case of zero conservative force, the DPD fluid turns out to be compressible. Effects of the compressibility are observed to be reduced as the particle mass is chosen to be smaller and the system temperature to be higher. In the case of non-zero conservative force, the condition of constant density and divergence-free of velocity can be approximately achieved at large values of the repulsion parameter (i.e., weakly compressible flow). Furthermore, the speed of sound and local Mach number are computed and found to be in good agreement with the theoretical estimation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.