Abstract

Abstract In the process of turbine acceleration, due to the influence of compressor and complex secondary air system, the change process of coolant purge flow is relatively lagging behind that of mainstream flow and rotational speed. The lagging egress of coolant flow influence the aerodynamic performance and endwall cooling effectiveness of turbine acceleration process. The flow field and aerothermal performance of two-stage axial turbines combined with rim seal structures and coolant purge flow lagging effects in the turbine acceleration process was numerically investigated using Unsteady Reynolds-Averaged Navier-Stokes (URANS) via SST turbulence model. The effects of lagging coolant purge flow across the rim seal on the turbine aerodynamics and endwall cooling effectiveness were analyzed. The obtained results show that the turbine aerodynamic efficiency obtains the maximum value when the coolant purge flow lagging time equals to half the acceleration time at the same rotational speed after the end of lagging times. The total-to-total efficiency for the second stage is more sensitive to lagging times. The turbine output power is almost un-changed due to combination of additional work capacity and aerodynamic loss with the introduction of coolant. The turbine endwalls have the maximum averaged cooling effectiveness in the turbine acceleration process without consideration of the coolant purge flow lagging time. And endwall cooling effectiveness decreases with the increase of coolant purge flow lagging time at the same rotational speed and mainstream flow conditions. The detailed flow field of two-stage turbine considering interaction between the coolant purge flow and mainstream was also discussed. The present work provides the reference for the match design between the turbine mainstream flow and secondary air flow system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call