Abstract

The initiation, propagation, coalescence evolution behaviors of cracks in rock mass, and even fissure water pressure have significant impacts on the strength and stability of fractured rock mass in engineering projects. In this paper, we propose an elasto-brittle constitutive model considering fissure water pressure based on the computer code three-dimensional fast Lagrangian analysis of continua (FLAC3D). This constitutive model is initially validated through a pre-cracked rock-like-material specimen in the laboratory experiments and then proved to actually simulate the initiation, propagation, and coalescence characteristics of cracks considering fissure water pressure in brittle fractured rock mass. Afterwards, it is used to investigate the stability of the right bank slope in Dagangshan hydropower station which is located in Sichuan province, China. The whole stability of this rock slope during construction has been simulated using the above constitutive model. The development principles of cracks in a selected area and the displacement field of the slope under different fissure water pressures are obtained in the process of excavations. It is concluded that fissure water pressure has obvious and significant effect on the strength and stability of fractured rock mass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.